# MAT 3375 Regression Analysis 加拿大渥太华大学数学统计回归分析代考代写

MAT 3375 Regression Analysis – University of Ottawa

1. [6 points] Explain the following procedures/concepts (for sub-questions a, b, c), and give
short answers (for sub-questions d, e, f).
a) What do we mean when we say that the numerical response Y is fit linearly against
the numerical predictor X in the ordinary least squares sense?
b) How does forward stepwise selection work when we attempt to fit a numerical
response Y against a set of numerical predictors {X1, . . . ,Xp}?
c) What do we mean when we say that an observation is a Y −outlier for a dataset?
An X−outlier? An influential observation? Why is it important to identify such
observations?
d) Enumerate the main assumptions of the multiple linear regression model.
e) Name 5 extensions of the SLR model, briefly explaining how these models differ
from SLR.
i. It is possible to fit a numerical response Y against a numerical predictor X by
minimizing
Pn
i=1|yi − ˆyi|.
ii. Generally, R2 = r2 in SLR.
iii. The Spearman correlation between two variables always has the same sign as
their Pearson correlation.
iv. We can always determine the linear fit of a dataset {(xi, yi) | i = 1, . . . , n}.

# Physics 1112/1114 General/Basic Physics 物理代考力学热学声学光学电学物理学代写

physics物理代考英文物理代写,除此之外还可代考代写热力学量子力学代考流体力学代考 、流体力学代写、工程代考、相对论代考电磁学代考、力学代考、经典力学代考、物理作业代写 #英国物理代考 #物理考试代考 #澳洲物理代考 #美国物理代考 #北美代考 #加拿大物理代考

# ECON 120A: Econometrics 计量宏观微观经济学代考金融财务会计代写代做

1. a) The null: The proportion of registered voters who are planning to vote for the incument president <0.5
The alternative: The proportion of registered voters who are planning to vote for the incument president ≥0.5
b) Test statistic=(636/1200-0.5)/sqrt(0.5*0.5/1200)=2.08
c) CV is Z0.05=1.64
d) From the standard normal table, the p-value for the test statistic, z = 2.08 is 1-0.9812=0.0188.
e) Since p-value is lower than 0.05, we reject the null and conclude that the proportion of registered voters who are planning to vote for the incument president increases significantly at 5% significance level.
f) We say the proportion of registered voters who are planning to vote for the incument president increases significantly, while in fact it does not.
g) We say the proportion of registered voters who are planning to vote for the incument president does not increases significantly, while in fact it does.

# 代码代做编程Python代考代写DSC 20 – Prgrmng/DataStruc for Data Sci

python考试代考作业代做服务，计算机代码编程机考笔试样样可代做代写，种类齐全，各类型、各难度的编程作业代写服务，高质原创C语言 C++ java python matlab code代写java代码代做Python代考java代考，按时高分完成。

def code(*args):
res = list()
if len(args) == 0:
return res

if len(args) == 1:
for a in args[0]:
res.append([a])
return res

i = 0
while i < len(args[0]) and i < len(args[1]):
res.append([int(args[0][i]) + int(args[1][i])])
i += 1
return res

CS代考 计算机CS代考代写C++代写 #matlab代考#编程代做 #C语言代考 #matlab代做#网络代考#英国代考#assignment代写#计算机代考#代码代写#代做程序#程序代写#python代考#python代写#托福代考#代写#Java代考#数据结构代写#算法代考#数据结构代写#数据库代考#matlab作业#Algorithm代考#美国代考#澳洲代考#计算机网络代考#加拿大代考#编程代写#物理代写

# 全球top30 美国UC系高校Linear Algebra 线性代数代考满分

(a) State Cauchy-Buniakovski-Schwartz Inequality on an inner product space V . Don’t forget
to say when equality is attained.

(b) Prove that
(1 · 2016 + 2 · 2017 + 3 · 2018 + · · · + 2015 · 4030)2 < (12 + 22 + · · · + 20152) · (20162 + 20172 + · · · + 40302).
Explain why this is not an equality.

# 数学微积分代考 MAT232 Multivariable calculus数学代写final exam代考

Calculus（Single&Multi-variable）微积分Linear algebra 线性代数Probability theory 概率论Statistics 统计学Matrix Analysis 矩阵分析Complex analysis 复变分析Real analysis 实数分析Differential equations 微分方程Numerical analysis 数值分析Discrete mathematics 离散数学Abstract algebra 抽象代数/近世代数Combinatorics 组合数学Modeling 数学建模Number theory 数论Topology 拓扑学Geometry 几何

Q7 (10 points)
(Part A is worth 5 points; Part B is worth 5 points)
Leave numbers in generic form such as: $e^$, $\ln( )$, $\sqrt{*}$, etc., if applicable. No decimal numbers.
Part A. If $\displaystyle f(t) = 5\sqrt{t} – \frac{1}{t}$ for $t>0$ and $g(x,y) = x^2+y^2-5$, determine where $(f \circ g) (x,y)$ is continuous.
Part B. Given that $z=y^3 \sin(4x) + (x+x^2)^{\cos(x)}e^{-x^4} + \cos(3x) \arctan(y^2+1) \ln(y^3+42)$, find $\displaystyle \frac{\partial^2 f}{\partial x \partial y}$ when $x=\pi$ and $y=0$.

# 数学代写|Real analysis实变分析代考，Complex analysis复变分析代考,数学代考

analysis是数学专业代数方向学生的必修课程，简单来说，复分析是描述解析函数性质的，实分析是描述解析函数性质的。

1. Let D  C be the intersection of the half planes y < 2x and y > 􀀀2x, where z = x +
iy 2 C. Find a conformal mapping of D onto the following domains:
a) Find a conformal mapping of D onto the right half plane.
b) Find a conformal mapping of D onto the unit disk D = fjzj < 1g.
c) Determine the automorphism group for D.
2. Given a 2 (􀀀1; 1) we wish to find a conformal map  of the slit disk D n (􀀀1; a]
onto the unit disk D such that (i=2) = 0. In order to do this proceed as follows:
a) Find a conformal map of D n (􀀀1; a] onto D n (􀀀1; 0].
b) Find a conformal map of D n (􀀀1; 0] onto D.
3. Let D = D n fjz + 1=2j  1=2g. Find a conformal map from D to D.
4. Consider the unit disk
a) Show that D is not conformally equivalent to C.
b) Find an analytic mapping f : D ! C such that f(D) = C.
5. Prove that the only entire functions f : C ! C which are injective (one to one) are the
linear functions f(z) = az + b.
6. Let Dj ; j = 1; 2; : : : ; be a sequence of simply connected domains such that Dj+1 
Dj  C for all j = 1; 2; : : : , and such that the interior D of \jDj is nonempty and
connected.
a) Prove that D is simply connected.
b) Pick any point z0 2 \jDj . Let gj : D ! Dj be a conformal map, normalized so that
gj (0) = z0 and g0
j (0) 2 (0; 1). Prove that the sequence gj ; j = 1; 2; : : : ; converges
locally uniformly on D to an analytic function g with the properties: if z0 2= D then g
 z0; if z0 2 D then g : D ! D is a conformal map.

USA靠谱在线网课代考