Month: 1月 2022

数学微积分代考 MAT232 Multivariable calculus数学代写final exam代考

留学生online final exam代考代写,12月份代考考试旺季,接下来就是网课代上网课代修网课代考季节。不管是简单的数学微积分代考,还是深层次的 离散数学代考Abstract algebra,实分析代考Real analysis ,复分析代考Complex analysis ,抽象代数代考Abstract algebra ,数值分析代考Numerical analysis等课程考试代考,我们都可以拿捏!

Calculus(Single&Multi-variable)微积分Linear algebra 线性代数Probability theory 概率论Statistics 统计学Matrix Analysis 矩阵分析Complex analysis 复变分析Real analysis 实数分析Differential equations 微分方程Numerical analysis 数值分析Discrete mathematics 离散数学Abstract algebra 抽象代数/近世代数Combinatorics 组合数学Modeling 数学建模Number theory 数论Topology 拓扑学Geometry 几何

Q7 (10 points)
(Part A is worth 5 points; Part B is worth 5 points)
Leave numbers in generic form such as: $e^$, $\ln( )$, $\sqrt{*}$, etc., if applicable. No decimal numbers.
Part A. If $\displaystyle f(t) = 5\sqrt{t} – \frac{1}{t}$ for $t>0$ and $g(x,y) = x^2+y^2-5$, determine where $(f \circ g) (x,y)$ is continuous.
Part B. Given that $z=y^3 \sin(4x) + (x+x^2)^{\cos(x)}e^{-x^4} + \cos(3x) \arctan(y^2+1) \ln(y^3+42)$, find $\displaystyle \frac{\partial^2 f}{\partial x \partial y} $ when $x=\pi$ and $y=0$.
You must clearly and coherently justify your work – show your steps in your calculation. You cannot provide only the final answer. Circle your final answer for each part.

代写之家为海外留学生提供全方面的线上辅导,包括但不限于:exam代考、留学生考试、代考 作业代写留学生作业代写网课代上网课代考,致力于提升Exam/Quiz分数并向更高GPA冲刺。同时提供考试辅助等在线解题服务。