物理代考

英文伦敦大学学院UCL代考PHAS0042 Quantum Mechanics量子力学物理代写

University College London英国伦敦大学学院物理专业量子力学代考PHAS0042 Quantum Mechanics,UCL期末考试,开学补考欢迎来询,经验丰富!诸如:PHAS0041:-Solid State Physics固体物理学,PHAS0038 – Electromagnetic Theory电磁理论,MATH0025 Mathematics For General Relativity相对论,PHAS0025 – Mathematical Methods III数学方法这些课程都可以接!近两年针对UCL英国伦敦大学学院的exam代考考试经验丰富,通常国内下午5点开考,时长3-4小时,专业靠谱英国代考

代寫之家提供包括數學代考、 經濟代考金融代考 、物理代考、化學代考,CS代考,電氣工程代考,留學生代考、online quiz代考、Accounting代考、網課代考、網課exam代考final exam代考、留學生online quiz代考、online exam代考HK留學生代考、香港exam代考等在内的香港留學生exam代考服務。

Physics 1112/1114 General/Basic Physics 物理代考力学热学声学光学电学物理学代写

基础物理学的力学、热学、声学、光学、电学物理代考代写代做,測驗 ,香港代考,香港代寫加微信:OnlineHelp985。题目难度居中,但是考试形式较为尴尬,每次只能写完一题才能到下一题,无法返回上一题查看,题量大时间紧!整体挑战难度较高。

physics物理代考英文物理代写,除此之外还可代考代写热力学量子力学代考流体力学代考 、流体力学代写、工程代考、相对论代考电磁学代考、力学代考、经典力学代考、物理作业代写 #英国物理代考 #物理考试代考 #澳洲物理代考 #美国物理代考 #北美代考 #加拿大物理代考

代写之家为海外留学生提供全方面的线上辅导,包括但不限于:exam代考、留学生考试、代考 作业代写留学生作业代写网课代上网课代考online exam代考,致力于提升Exam/Quiz分数并向更高GPA冲刺。同时提供考试辅助等在线解题服务。

Quantum Mechanics量子力学代考物理代写代做

随着量子力学Quantum Mechanics慢慢被大众所知晓,一些围绕着它创作的梗也逐渐流行开来,比如说“遇事不决,量子力学”。而在对其进行调侃的同时,很多人却说量子力学很恐怖。的确如此,代考代写物理学中的四大力学金刚量子力学、电动力学、热力学与统计力学、理论力学理解起来都比较飘渺。

Question 8
The primitive vectors of the face-centred cubic (fcc)lattice are Not yet
a = (a/2)(O,1,1), b = (a/2)(1,0,1) and c = (a/2)(1,1,0) answered
so that points on the Bravais lattice have position vectors,
Rn1,n2,n3 = n1 a + n2 b +n3 c
The constant a is the lattice parameter and n1,n2 and n3 are integers. What is the shortest distance (in units of the lattice para
nneter a,otice have)? [15
question
the lattice and,for a given point, how many points surrounding it are this far away (ie. how many nearest neighbours does a poimarks]
Select one:

  1. distance= 0.5 a,9 nearest neighbours
  2. distance = a, 12 nearest neighbours
  3. distance =0.7071 a, 12 nearest neighbours
  4. distance= 1a,8 nearest neighbours
  5. distance = 0.5a, 2 nearest neighbours
  6. None of these answers are correct
  7. distance = 0.7071a, 6 nearest neighbours

代写之家为海外留学生提供全方面的线上辅导,包括但不限于:exam代考、留学生考试、代考 作业代写留学生作业代写网课代上网课代考,致力于提升Exam/Quiz代考分数并向更高GPA冲刺。同时提供考试辅助等在线解题服务。

数学物理方程代考,美国代考,加拿大代考,澳洲代考,英国代考

数学物理方程具有很强的物理背景,代表了前电脑时代人类的最高智慧水平,觉得难是很正常的。代写之家数学代考、 物理代考、exam代考线上代考、online test、take homework 服务。基础物理声光电磁学,理论物理量子力学,经典力学,电动力学,统计力学等,数学离散数学、数理统计、抽象代数、微分方程、测度论、实变函数、数学物理方程等代考代写

在很多大学,数学物理方程代写这门课程是数学专业和物理专业学生混合在一起上课的。

数学物理方程了,方程自然是从物理里面来的,背景也都是些物理背景(当然也有不是源于物理的方程,同样的方程也有很多解释的方式)。这门课的主要目的是教你解方程,因此大多数老师只会简略地分析一下方程的物理背景,或者干脆留给学生自己看,而数学出身的作者编的教材关于物理背景的部分基本上也都是写得能看的样子就算了。你要是数学系的学生觉得这些背景费解,一开始直接跳过都没啥太大的问题,后面再慢慢想。你要是强迫症,非得搞清楚一点,先学学物理或许好一点。各种微分方程千千万,其中最具有代表性的是三个:波动方程,热传导方程,拉普拉斯/泊松方程(也叫场方程)。

下面是一则数学物理方程作业的实战

Question 1)
(a) Show that, by choosing suitable values for P and Q, Green’s Theorem in the
plane leads to the formula for the area enclosed by a loop i.e.,
Area =
1
2 ˛loop
xdy − ydx
[2 marks]
(b) Use this to find the area of the closed curve defined by
x = cos 
y = 3 sin 
where 0 ≤  ≤ 2. [4 marks]
Question 2)
Consider the vector field, F = x2yz i+xy2z j+xyz2 k. Use the divergence theorem
to evaluate
” F · ds
over the surface of the unit cube defined by the ranges x = [0, 1]; y = [0, 1]; z = [0, 1].
[4 marks]
Question 3)
Consider the vector field F = (2x+yz) i+(2y+xz) j+xyk. Using Stokes’ theorem,
show that ¸ F · dr = 0 around any closed curve. [2 marks]
Question 4)
Consider the vector field, F = y i+x k. Use Stokes’ theorem to find ¸ F·dr around
the circular loop in the xy-plane defined by x2 + y2 = a2. [4 marks]
Question 5)
For gravity, g, we can define the divergence as, ∇ · g = −4G, where G is the
gravitational constant and  is the mass density. The divergence theorem states that,
“S
g · ds = °V
∇ · g dV.
By applying the divergence theorem to a point within the Earth’s radius, a distance
r from the centre:
(a) Draw a sketch showing a suitable choice of surface, S. [2 marks]
(b) Show that the magnitude of g is given by:
g(r) = −
4
3
Gr
(Assume that the Earth has a constant density.) [2 marks]
Question 6)
The square OABC lies in the xy-plane and is defined by the points:
O = (0, 0, 0);A = (1, 0, 0);B = (1, 1, 0);C = (0, 1, 0). The vector field, b, is given by,
b = 2yz i + (x2 − y2) j + (y + x2 − z2) k.
(a) Evaluate the line integral, I1 = ¸ b · dr, following the path O-A-B-C-O.
[4 marks]
(b) Determine ∇ × b. [2 marks]
(c) Evaluate, I2 = ˜OABC(∇ × b) · ds, over the square OABC. [4 marks]

代写之家为海外留学生提供全方面的线上辅导,包括但不限于:exam代考、留学生考试、代考 作业代写留学生作业代写网课代上网课代考,致力于提升Exam/Quiz分数并向更高GPA冲刺。同时提供考试辅助等在线解题服务。

热力学和流体力学代考代写Thermodynamics,Fluid Mechanics

MCEN机械工程系课程Thermodynamics and Fluid Mechanics代写物理代写中的热力学也经常有代考接单,此次是六成流体力学内容,四成热力学内容,由两个写手共同完成,3小时考试热力学与流体力学代考过程非常完美!

流体力学代考
Fluid Mechanics流体力学代写代考

以下只展示部分考前例题

Part I – Thermodynamics Question 4 (10 marks)
Consider an ideal Otto cycle, with a compression ratio of 11. At bottom dead centre before
the compression, the air is at 100 kPa, 300 K. The temperature at the end of the isentropic
expansion process is 700 K. Assume constant specific heats at room temperature, and the
following properties of air:
Cv = 0.718 kJ/kg.K, Cp = 1.005 kg/kg.K, R= 0.287 kJ/kg.K and γ = 1.4.
(a) Show and label the cycle on a P-v diagram, labelling all states, work and heat
transfer processes. (4 marks)
(b) Find the temperature and pressure at the beginning of the constant volume heat
addition process. (2 marks)
(c) Find the temperature and pressure at the beginning of the isentropic expansion
process. (2 marks)
(d) Determine the efficiency of the cycle. (2 marks)

Part II – Fluid Mechanics Question 3:

A cylindrical vessel is partially filled with water, and starting from rest the vessel is
rotated at a constant angular velocity 𝜔. The velocity 𝑉􀰏 within the fluid depends on
radial location 𝑟, the time from the start of rotation 𝜏, 𝜔 and the fluid properties.
(i) Find the non-dimensional groups that relate 𝑉􀰏 and the other parameters of
relevance. (8 marks)
(ii) If, in another experiment, honey is rotated in the same vessel at the same angular
speed, determine from your dimensionless parameters the ratio of the time for the honey and
water to attain the steady motion. Assume water and honey to be of the same density and
honey to be 2000 times more viscous than water. (4 marks)
(iii) At steady state, determine and explain briefly which non-dimensional groups will
be irrelevant. Then, from the remaining relevant group/s determine how 𝑉􀰏 will vary with 𝑟.
(4 marks)

代写之家(daixiezhijia.com)为你解决一切留学生代考代写难题,为留学生提供专业online exam代考,online quiz代考网课代考,代考价格,online quiz代考推荐,数学代考代写化学代考代写物理代考代写金融代考代写经济学代考统计代考等留学生代考服務代写代做服务。

物理代考代写Thermodynamics热力学代考physics代考

代写之家物理代考代写physics代考,拯救被逼疯的海外学子,葡萄牙语热力学代考Thermodynamics代考,因为不是是葡萄牙语卷面,客户非常担心我们没法进行代考操作,不仅担心翻译的正确性,还担心我们做题的质量,考前还特意要求进行了一场有偿测试,结果令她满意,但是真正考试的时候心慌慌的焦虑。。。她请朋友考时在在旁边将葡语翻译成英文供我们答题,最后过程非常顺利,成绩也是不出所料得了个高分,27/30,百分之九十的正确率✔,来之不易!

热力学代考
热力学代考
物理代考

代写之家为海外留学生提供全方面的线上辅导,包括但不限于:exam代考、留学生考试、代考 作业代写留学生作业代写网课代上网课代考,致力于提升Exam/Quiz分数并向更高GPA冲刺。同时提供考试辅助等在线解题服务。

美国物理量子力学代考-物理代写-physics代写-电动力学代考

物理量子力学代考,量子力学(Quantum Mechanics),为物理学理论,与电动力学代考,热力学统计物理代写,理论力学代写并称为四大力学金刚,理论物理代写难度比基础物理学高出蛮多,这些科目基本是物理专业的学生才有的课程。量子力学是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。它与相对论一起构成现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学代写等学科和许多近代技术中得到广泛应用。

量子力学代考-代写之家
物理代写

[6 pts] Calculate the product xp of the position and momentum uncertainties for the ground state
0 and for the rst excited state 1 of the harmonic oscillator. It may be useful to recall the de nitions
of the position and momentum operators in terms of ^a􀀀 and ^a+:
^x =
r
h
2m!
(^a􀀀 + ^a+); ^p = i
r
m!h
2
(^a􀀀 􀀀 ^a+): (1)
2 What is Momentum Anyway?
[10 pts] Prove that
d hxi

dt

hpi
m
:
Hint: it is helpful to recall the following formulas:
ih
@
@t
= 􀀀
h2
2m
@2
@x2 + V (x) ; (2)
h^ Qi =
Z 1
􀀀1
(x; t)^Q (x; t)dx; (3)
^p = 􀀀ih
@
@x
: (4)
3 Double Delta Potential
[14 pts] Consider a particle of mass m in a potential given by
V (x) = 􀀀[(x + a) + (x 􀀀 a)]; ; a > 0:
This system has two bound states for very large a, but only a single bound state for very small a.

  1. (2 pts) The stationary states in this potential may be taken to be either even or odd. Explain
    why in one sentence. (Hint: either look at the form of V (x) or consider the parity operator.)
  2. (4 pts) Sketch the wave functions of the two bound states for very large a. Be sure to label
    which of the two is the ground state and which is the excited state. Then sketch the wave
    function of the single bound state for very small a.
    For arbitrary a > 0, the bound state energies E are determined by the following transcendental
    equation for the variable  =
    p
    􀀀2mE=h:
    e􀀀2a =
    (
    h2
    m 􀀀 1; (x) even;
    1 􀀀 h2
    m ; (x) odd:
    (5)
  3. (3 pts) Find the energies of the even and odd bound states in the limit as a goes to in nity.
  4. (3 pts) Find the energy of the single bound state in the limit as a goes to zero.
  5. (2 pts) Estimate the value of a at which the system goes from having one bound states to two.
    You are NOT expected to solve for a exactly.
    2
    4 Half Harmonic oscillator
    [8 pts] Consider the half-harmonic oscillator potential (which represents, for example, a string which
    can be stretched but not compressed), given by the potential
    V (x) =
    (
    1
    2m!2×2 for x > 0;
    1 for x  0:
  6. (4 pts) What are the allowed energies? Explain your reasoning.
  7. (4 pts) What is the wave function for the ground state of the half-harmonic oscillator, written
    as a function of x? Make sure your solution is normalized.
    5 Two-Level System
    [14 pts] Consider the photons and polarizers described in class, which is an instance of a two-level
    system. Recall that the elements of the polarization vector correspond to probability amplitudes,
    similar to the expansion coecients cn of wave functions.
  8. (3 pts) For a photon incident on a linear polarizer aligned in the ^x direction (meaning that it
    transmits photons in the jxi-polarized state), what is the transmission probability if the initial
    polarization vector of that photon is ~E = Ex^x + Ey ^y?
  9. (3 pts) A photon prepared in the jxi state is incident on a linear polarizer oriented at angle 
    relative to ^x. Solve for and sketch a graph of the probability of transmission (i.e. the probability
    that the photon makes it through the polarizer) as a function of .
  10. (4 pts) As we showed in class, using the fjxi; jyig basis, an `x-polarizer’ transmits photons
    polarized in the x-direction while re
    ecting photons polarized in the y-direction. It makes a
    measurement of the operator (expressed in the fjxi; jyig basis)
    1 =
    
    1 0
    0 􀀀1
    
    : (6)
    A polarizer rotated at +45 degrees relative to the ^x-axis measured the operator
    2 =
    
    0 1
    1 0
    
    : (7)
    What is the operator corresponding to a polarizer oriented at +30 degrees relative to the ^x-axis?
  11. (4 pts) Consider a particle prepared in the right-hand polarized state, j i = jRi = p1
    2
    (jxi + ijyi).
    For times t < 0, the Hamiltonian for this particle is 0: in other words, it does not interact with
    anything and nothing changes about its state. For times t  0, the following Hamiltonian is
    turned on:
    ^H
    =
    􀀀
    jxihxj 􀀀 jyihyj
    
    =
    􀀀
    jxi jyi
    
    
    
    1 0
    0 􀀀1
    
    
    
    hxj
    hyj
    
    ;  0: (8)
    Under the time evolution governed by ^H, is there ever a time t when the state becomes
    [a] j (t)i = jLi = p1
    2
    (jxi 􀀀 ijyi)? Explain your reasoning. If yes, what is the rst time t
    when this occurs?
    [b] j (t)i = jxi? Explain your reasoning. If yes, what is the rst time t when this occurs?
    3
    6 Rigged Hilbert Space
    [8 pts] Consider complex-valued functions f; g of a real variable x, with inner product de ned as
    hfjgi =
    R 1
    􀀀1 f(x)g(x)dx. For the following functions, name the most restricted space to which they
    belong: nuclear space, Hilbert space, extended space, or none of the above.
  12. (2 pts) f(x) = sin(x);
  13. (2 pts) f(x) = sin(x)e􀀀x2 ;
  14. (2 pts) f(x) = 1
    x8+1;
  15. (2 pts) f(x) = ex2 .
    4

代写之家为海外留学生提供全方面的线上辅导,包括但不限于:exam代考、留学生考试、代考 作业代写留学生作业代写网课代上网课代考,致力于提升Exam/Quiz分数并向更高GPA冲刺。同时提供考试辅助等在线解题服务。