代写之家可以接数学专业课程analysis代写,无论是本科阶段Stein的实分析代写(Real analysis),还是研究生阶段Folland的analysis代考,我们都有信心可以啃下这块硬骨头! 当然复分析代考 (Complex analysis) 也是OK的,此外,数学专业的实变函数,复变函数,测度论,拓扑学,抽象代数,几何群论,数值分析,表示论,常偏微分方程等数学代写代考也是拿手好戏
analysis是数学专业代数方向学生的必修课程,简单来说,复分析是描述解析函数性质的,实分析是描述解析函数性质的。
下面是复分析中Comformal Mappings部分的作业代写实战
- Let D C be the intersection of the half planes y < 2x and y > 2x, where z = x +
iy 2 C. Find a conformal mapping of D onto the following domains:
a) Find a conformal mapping of D onto the right half plane.
b) Find a conformal mapping of D onto the unit disk D = fjzj < 1g.
c) Determine the automorphism group for D. - Given a 2 (1; 1) we wish to find a conformal map of the slit disk D n (1; a]
onto the unit disk D such that (i=2) = 0. In order to do this proceed as follows:
a) Find a conformal map of D n (1; a] onto D n (1; 0].
b) Find a conformal map of D n (1; 0] onto D. - Let D = D n fjz + 1=2j 1=2g. Find a conformal map from D to D.
- Consider the unit disk
a) Show that D is not conformally equivalent to C.
b) Find an analytic mapping f : D ! C such that f(D) = C. - Prove that the only entire functions f : C ! C which are injective (one to one) are the
linear functions f(z) = az + b. - Let Dj ; j = 1; 2; : : : ; be a sequence of simply connected domains such that Dj+1
Dj C for all j = 1; 2; : : : , and such that the interior D of \jDj is nonempty and
connected.
a) Prove that D is simply connected.
b) Pick any point z0 2 \jDj . Let gj : D ! Dj be a conformal map, normalized so that
gj (0) = z0 and g0
j (0) 2 (0; 1). Prove that the sequence gj ; j = 1; 2; : : : ; converges
locally uniformly on D to an analytic function g with the properties: if z0 2= D then g
z0; if z0 2 D then g : D ! D is a conformal map.
代写之家为海外留学生提供全方面的线上辅导,包括但不限于:exam代考、留学生考试、代考, 作业代写,留学生作业代写, 网课代上、网课代考,致力于提升Exam/Quiz分数并向更高GPA冲刺。同时提供考试辅助等在线解题服务。